How do you factor #4x^3-2x^2-7# ?
1 Answer
where:
#x_k = 1/6(1+omega^(k-1) root(3)(190+3sqrt(4011))+bar(omega)^(k-1) root(3)(190-3sqrt(4011)))#
where:
#omega = -1/2+sqrt(3)/2i#
Explanation:
#f(x) = 4x^3-2x^2-7#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 0+0-224-21168+0 = -21392#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=54f(x)=216x^3-108x^2-378#
#=(6x-1)^3-3(6x-1)-380#
#=t^3-3t-380#
where
Cardano's method
We want to solve:
#t^3-3t-380=0#
Let
Then:
#u^3+v^3+3(uv-1)(u+v)-380=0#
Add the constraint
#u^3+1/u^3-380=0#
Multiply through by
#(u^3)^2-380(u^3)+1=0#
Use the quadratic formula to find:
#u^3=(380+-sqrt((-380)^2-4(1)(1)))/(2*1)#
#=(380+-sqrt(144400-4))/2#
#=(380+-sqrt(144396))/2#
#=190+-3sqrt(4011)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(190+3sqrt(4011))+root(3)(190-3sqrt(4011))#
and related Complex roots:
#t_2=omega root(3)(190+3sqrt(4011))+bar(omega) root(3)(190-3sqrt(4011))#
#t_3=bar(omega) root(3)(190+3sqrt(4011))+omega root(3)(190-3sqrt(4011))#
where
Now
#x_1 = 1/6(1+root(3)(190+3sqrt(4011))+root(3)(190-3sqrt(4011)))#
#x_2 = 1/6(1+omega root(3)(190+3sqrt(4011))+bar(omega) root(3)(190-3sqrt(4011)))#
#x_3 = 1/6(1+bar(omega) root(3)(190+3sqrt(4011))+omega root(3)(190-3sqrt(4011)))#