If #f'(x)=2cosx+sec2x# and #f(pi/3)=2#, find #f(x)#?

1 Answer
Jul 13, 2017

#f(x)=2sinx+1/2ln|(tan2x+sec2x)|+2-sqrt3+1/2ln(2+sqrt3)#

Explanation:

As #f'(x)=2cosx+sec2x#

#f(x)=intf'(x)dx#

= #int(2cosx+sec2x)dx#

= #2sinx+1/2ln|(tan2x+sec2x)|+c#

But #f(pi/3)=2#, hence

#2sin(pi/3)+1/2[ln|(tan((2pi)/3)+sec((2pi)/3)|]+c=2#

or #sqrt3+1/2(ln|-sqrt3-2|+c=2#

or #c=2-sqrt3+1/2ln(2+sqrt3)#

Hence #f(x)=2sinx+1/2ln|(tan2x+sec2x)|+2-sqrt3+1/2ln(2+sqrt3)#