What is the exact value of #tan 15^@# ?
2 Answers
Explanation:
Use trig identity:
In this case
Solve this quadratic equation for tan a.
There are 2 real roots:
a.
b.
Explanation:
Use:
#sin 30^@ = 1/2#
#cos 30^@ = sqrt(3)/2#
#sin 45^@ = cos 45^@ = sqrt(2)/2#
#sin(alpha-beta) = sin alpha cos beta - sin beta cos alpha#
#cos(alpha-beta) = cos alpha cos beta + sin alpha sin beta#
#tan theta = sin theta / cos theta#
Then:
#sin 15^@ = sin (45^@ - 30^@)#
#color(white)(sin 15^@) = sin 45^@ cos 30^@ - sin 30^@ cos 45^@#
#color(white)(sin 15^@) = sqrt(2)/2 sqrt(3)/2 - 1/2 sqrt(2)/2#
#color(white)(sin 15^@) = sqrt(2)/4(sqrt(3)-1)#
#cos 15^@ = cos (45^@ - 30^@)#
#color(white)(cos 15^@) = cos 45^@ cos 30^@ + sin 45^@ sin 30^@#
#color(white)(cos 15^@) = sqrt(2)/2 sqrt(3)/2 + sqrt(2)/2 1/2#
#color(white)(cos 15^@) = sqrt(2)/4(sqrt(3)+1)#
#tan 15^@ = sin 15^@ / cos 15^@#
#color(white)(tan 15^@) = (color(red)(cancel(color(black)(sqrt(2)/4)))(sqrt(3)-1)) / (color(red)(cancel(color(black)(sqrt(2)/4)))(sqrt(3)+1))#
#color(white)(tan 15^@) = (sqrt(3)-1) / (sqrt(3)+1)#
#color(white)(tan 15^@) = ((sqrt(3)-1)^2) / ((sqrt(3)+1)(sqrt(3)-1))#
#color(white)(tan 15^@) = (3-2sqrt(3)+1) / (3-1)#
#color(white)(tan 15^@) = 2 - sqrt(3)#
Footnote
We can see the original values of