Find the derivative of #cos# using First Principles?

1 Answer
Jul 18, 2017

By the limit definition of the derivative if #y=f(x)#, then

# dy/dx=f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h #

So with # y=f(x) = cosx # we have;

# f'(x) = lim_(h rarr 0) ( cos(x+h) - cos x ) / h #

Using the cosine sum of angle formula:

# cos(A+B)=cosAcosB- sinAcosB #

We get

# f'(x) = lim_(h rarr 0) ( cosxcos h-sinxsin h - cos x ) / h #
# " " = lim_(h rarr 0) ( cosxcos h-cosx-sinxsin h ) / h #
# " " = lim_(h rarr 0) ( cosx(cos h-1)-sinxsin h ) / h #
# " " = lim_(h rarr 0) {(cosx(cos h-1))/h-(sinxsin h ) / h} #
# " " = lim_(h rarr 0) (cosx(cos h-1))/h- lim_(h rarr 0)(sinxsin h ) / h #
# " " = cosxlim_(h rarr 0) (cos h-1)/h - sinx lim_(h rarr 0)(sin h ) / h #

We now have to rely on some standard calculus limits:

# lim_(h rarr 0)sin h/h =1 #
# lim_(h rarr 0)(cos h-1)/h =0 #

And so using these we have:

# f'(x) = cosx(0) - sinx (1) #
# " " = - sinx #

Hence,

# dy/dx=-sinx#