Question #4f2b1

2 Answers
Jul 19, 2017

#[(sinx+cosx)^2-1]/cos^2x=2tanx#

Explanation:

#[(sinx+cosx)^2-1]/cos^2x=((sin^2x+2sinxcosx+cos^2x)-1)/cos^2x#

Use the identity:
#sin^2x+cos^2x=1#

#[(sinx+cosx)^2-1]/cos^2x=(2sinxcosx+1-1)/cos^2x#

#[(sinx+cosx)^2-1]/cos^2x=(2sinxcosx)/cos^2x#

#[(sinx+cosx)^2-1]/cos^2x=(2sinx)/cosx#

Use the identity:
#sinx/cosx=tanx#

#[(sinx+cosx)^2-1]/cos^2x=2tanx#

Jul 19, 2017

#2tanx#

Explanation:

#"expand " (sinx+cosx)^2#

#rArr(sin^2x+2sinxcosx+cos^2x-1)/cos^2x#

#•color(white)(x)sin^2x+cos^2x=1#

#rArr(2sinxcosx+1-1)/cos^2x#

#=(2sinxcancel(cosx))/(cancel(cosx)cosx)=2sinx/cosx=2tanx#