Simplify #[(6(3^(n+1)))/ (3^(n(n-1)))] /[(2(9)^(n+1)) / ((2^(n-1))^(n+1))]# ?

1 Answer
Dec 24, 2017

See below.

Explanation:

Assuming that the question reads

#[(6(3^(n+1)))/ (3^(n(n-1)))] /[(2(9)^(n+1)) / ((2^(n-1))^(n+1))]#

and knowing that #6=2 xx 3# and #9 = 3^2# we have

#(2 xx 3 xx 3^(n+1))/(3^(n(n-1))) = 2 xx 3^(n+1-n(n-1)+1)#

and

#(2(9)^(n+1)) / ((2^(n-1))^(n+1)) = (2 xx 3^(2(n+1)))/(2^(n^2-1)) = 3^(2n+2)/2^(n^2-2)# and finally

#2 xx 3^(n+1-n(n-1)+1) xx 2^(n^2-2) xx 3^(-2n-2) =2^(n^2-1) / 3^(n(n+2)) = (2/3)^(n^2)(1/(2 xx 3^(2n)))#