Differentiate #sin(x/2)# using first principles?
1 Answer
# d/dx sin(x/2)=1/2cos(x/2)#
Explanation:
Let:
# f(x) = sin(x/2) #
By definition, the derivative of
# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
So for the given function, we have;
# f'(x) = lim_(h rarr 0) ( sin((x+h)/2) - sin (x/2) ) / h #
# " " = lim_(h rarr 0) ( sin(x/2+h/2) - sin (x/2) ) / h #
Applying the trigonometric identity:
# sin (A+B)=sinAcosB+sinBcosA #
We get
# f'(x ) =lim_(h rarr 0) ( sin(x/2)cos(h/2)+sin(h/2)cos(x/2) - sin(x/2) ) / h #
# " " = lim_(h rarr 0) ( sin(x/2)(cos (h/2)-1)+sin(h/2)cos(x/2) ) / h #
# " " = lim_(h rarr 0) ( (sin(x/2)(cos (h/2)-1))/h+(sin(h/2)cos(x/2)) / h )#
# " " = lim_(h rarr 0) (sin(x/2)(cos(h/2)-1))/h+lim_(h rarr 0)(sin (h/2)cos(x/2)) / h#
# " " = sin(x/2) \ lim_(h rarr 0) (cos (h/2)-1)/h + cos(x/2) \ lim_(h rarr 0)(sin (h/2)) / h#
We know have to rely on some standard limits:
# lim_(theta rarr 0)sin theta/theta =1 #
# lim_(h rarr 0)(cos theta-1)/h =0 #
And so manipulating the denominator by a factor of
# f'(x) = sin(x/2) \ lim_(h rarr 0) (1/2)(cos (h/2)-1)/(h/2) + cos(x/2) \ lim_(h rarr 0)((1/2)sin (h/2)) / (h/2)#
# " " = 1/2sin(x/2) \ lim_(h rarr 0) (cos (h/2)-1)/(h/2) + 1/2cos(x/2) \ lim_(h rarr 0)(sin (h/2)) / (h/2)#
And putting
# f'(x) = 1/2sin(x/2) \ lim_(theta rarr 0) (cos theta-1)/(theta) + 1/2cos(x/2) \ lim_(theta rarr 0)(sin theta) / (theta)#
# " " = 1/2sin(x/2) xx 0 + 1/2cos(x/2) xx 1#
# " " = 1/2cos(x/2)#
Hence,
# d/dx sin(x/2)=1/2cos(x/2)#