Differentiate #sin(x/2)# using first principles?

1 Answer
Aug 8, 2017

# d/dx sin(x/2)=1/2cos(x/2)#

Explanation:

Let:

# f(x) = sin(x/2) #

By definition, the derivative of #f(x)# is the limit:

# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #

So for the given function, we have;

# f'(x) = lim_(h rarr 0) ( sin((x+h)/2) - sin (x/2) ) / h #
# " " = lim_(h rarr 0) ( sin(x/2+h/2) - sin (x/2) ) / h #

Applying the trigonometric identity:

# sin (A+B)=sinAcosB+sinBcosA #

We get

# f'(x ) =lim_(h rarr 0) ( sin(x/2)cos(h/2)+sin(h/2)cos(x/2) - sin(x/2) ) / h #
# " " = lim_(h rarr 0) ( sin(x/2)(cos (h/2)-1)+sin(h/2)cos(x/2) ) / h #

# " " = lim_(h rarr 0) ( (sin(x/2)(cos (h/2)-1))/h+(sin(h/2)cos(x/2)) / h )#

# " " = lim_(h rarr 0) (sin(x/2)(cos(h/2)-1))/h+lim_(h rarr 0)(sin (h/2)cos(x/2)) / h#

# " " = sin(x/2) \ lim_(h rarr 0) (cos (h/2)-1)/h + cos(x/2) \ lim_(h rarr 0)(sin (h/2)) / h#

We know have to rely on some standard limits:

# lim_(theta rarr 0)sin theta/theta =1 #
# lim_(h rarr 0)(cos theta-1)/h =0 #

And so manipulating the denominator by a factor of #2# to match the sine and cosine variable we have:

# f'(x) = sin(x/2) \ lim_(h rarr 0) (1/2)(cos (h/2)-1)/(h/2) + cos(x/2) \ lim_(h rarr 0)((1/2)sin (h/2)) / (h/2)#
# " " = 1/2sin(x/2) \ lim_(h rarr 0) (cos (h/2)-1)/(h/2) + 1/2cos(x/2) \ lim_(h rarr 0)(sin (h/2)) / (h/2)#

And putting #theta=h/2# and noting that #h/2 rarr 0# as #h rarr 0# we have:

# f'(x) = 1/2sin(x/2) \ lim_(theta rarr 0) (cos theta-1)/(theta) + 1/2cos(x/2) \ lim_(theta rarr 0)(sin theta) / (theta)#

# " " = 1/2sin(x/2) xx 0 + 1/2cos(x/2) xx 1#
# " " = 1/2cos(x/2)#

Hence,

# d/dx sin(x/2)=1/2cos(x/2)#