What is #lim_(x->oo) (sqrt(x^2+1)-sqrt(x^2-1))# ?

1 Answer
Aug 12, 2017

#lim_(x->oo) (sqrt(x^2+1)-sqrt(x^2-1)) = 0#

Explanation:

#lim_(x->oo) (sqrt(x^2+1)-sqrt(x^2-1))#

#= lim_(x->oo) ((sqrt(x^2+1)-sqrt(x^2-1))(sqrt(x^2+1)+sqrt(x^2-1)))/(sqrt(x^2+1)+sqrt(x^2-1))#

#= lim_(x->oo) ((x^2+1)-(x^2-1))/(sqrt(x^2+1)+sqrt(x^2-1))#

#= lim_(x->oo) 2/(sqrt(x^2+1)+sqrt(x^2-1))#

#= lim_(x->oo) 2/(abs(x)(sqrt(1+1/x^2)+sqrt(1-1/x^2))#

#= lim_(x->oo) 2/(2abs(x))#

#= lim_(x->oo) 1/abs(x)#

#= 0#