What is the value of #sintheta+ costheta/sintheta - costheta# OR #(sin theta + costheta)/(sin theta - costheta)# if #sintheta = 3/5#?
2 Answers
Explanation:
opposite side = 3, adjacent side = 4 and hypotenuse = 5
Explanation:
Here's another way of interpreting the question. If
If we multiply both the numerator and the denominator by
#= (sin theta + costheta)/(sin theta - costheta) * (sin theta + costheta)/(sintheta + costheta)#
#=(sin^2theta + cos^2theta + 2sinthetacostheta)/(sin^2theta - cos^2theta#
Use
#= (1 + 2sinthetacostheta)/(sin^2theta - (1 - sin^2theta))#
#= (1 + 2sinthetacostheta)/(sin^2theta - 1 + sin^2theta)#
Now use
#=(1 + sin2x)/(2sin^2theta - 1)#
So now we have that if
#=(1 + 24/25)/(2(3/5)^2 - 1)#
#= (49/25)/(18/25 - 1)#
#= (49/25)/(-7/25)#
#= -7#
Hopefully this helps!