How do you integrate #3t^2+2t+2# ?

3 Answers
Aug 18, 2017

#int (3t^2+2t+2) dt = t^3+t^2+2t+C#

Explanation:

I will use the following properties:

  • #d/(dt) t^n = n t^(n-1)" "# if #n != 0#

  • #int (d/(dt) f(t)) dt = f(t)+C" "# where #C# is a constant

  • #int (f(t) + g(t)) dt = int f(t) dt + int g(t) dt#

  • #int k f(t) dt = k int f(t) dt#

From the first two properties, we can deduce that if #n != -1# that:

#int t^n dt = 1/(n+1) t^(n+1)+C#

The third and fourth properties tell us that integration is a linear operator.

We can deduce that:

#int (3t^2+2t+2) dt = 3 int t^2 dt + 2 int t dt + 2 int 1 dt#

#color(white)(int (3t^2+2t+2) dt) = t^3+t^2+2t+C" "# where #C# is a constant.

Aug 18, 2017

#t^3 + t + 2t + C#

Explanation:

Given: Integrate #3t^2 + 2t + 2#

This is an indefinite integral. That means there are many solutions represented by the constant #C#.

#int (3t^2 + 2t + 2)dt = int 3t^2dt + int 2t dt + int 2 dt#

Since #int kdx = kx + C " and " int x^n dx = 1/(n+1) x^(n+1) + C, n != -1#:

#int 3t^2dt + int 2t dt + int 2 dt = 3/3t^3 + 2/2t + 2t + C#

#= t^3 + t + 2t + C#

Aug 19, 2017

See.

Explanation:

We have to integrate in respect to t.
#int(3t^2+2t+2)#
#=int3t^2+int2t+int2#
#=3intt^2+2intt+int2#[keeping the constant outside]
#=3×(t^3/3)+2×(t^2/2)+2t+c#[As it is a indefinite nominal having no limit]
#=t^3+t^2+2t+c#(ans)