If #tanx=sqrt2#, then find #sinx# and #cosx#?

1 Answer
Aug 23, 2017

Either #sinx=sqrt(2/3)# and #cosx=1/sqrt3#
or #sinx=-sqrt(2/3)# and #cosx=-1/sqrt3#

Explanation:

As #tanx=sqrt2#

#secx=+-sqrt(1+(sqrt2)^2)=+-sqrt3#

and hence #cosx=+-1/sqrt3#

#sinx=tanxcosx=sqrt2xx(+-1/sqrt3)=+-sqrt(2/3)#

but as #tanx# is positive, #sinx# and #cosx# would be positive and negative together.