Question #55487

2 Answers
Aug 28, 2017

#arcsin(4x)/512+xsqrt(1-16x^2)*(32x^2-1)/256+C#

Explanation:

To find #int\ x^2sqrt(1-16x^2)\ dx#, first substitute #4x=sin(u)#, or #dx=cos(u)/4\ du#.

This gives #1/64int\ sin^2(u)cos(u)sqrt(1-sin^2(u))\ du#. Using the identity #1-sin^2(u)=cos^2(u)#, this can be further simplified to #1/64int\ sin^2(u)cos^2(u)\ du#.

Now, we will use the identities #sin^2(u)=(1-cos(2u))/2# and #cos^2(u)=(1+cos(2u))/2#.

After simplifying with the product of the sum and difference formula, this becomes #1/256int\ 1-cos^2(2u)\ du#. Use the identity #1-cos^2(u)=sin^2(u)# to get #1/256int\ sin^2(2u)\ du#.

Now, we will use the identity #sin^2(u)=(1-cos(2u))/2# again. After a bit of simplifying, we have #1/512int\ 1-cos(4u)\ du#.

Using a bit of integration, the result is #u/512-sin(4u)/2048+C#.

Use the identities #sin(2u)=2sin(u)cos(u)# and #cos(2u)=cos^2(u)-sin^2(u)# to simplify #sin(4u)=2sin(2u)cos(2u)=2sin(u)cos(u)(cos^2(u)-sin^2(u))=2sin(u)cos^3(u)-2sin^3(u)cos(u)#.

Thus, our result simplifies to #u/512-(sin(u)cos^3(u)-sin^3(u)cos(u))/1024+C#.

Now, we know that #4x=sin(u)#, or #u=arcsin(4x)#. We substitute this back in, while remembering that #sin(arcsin(4x))=4x# and #cos(arcsin(4x))=sqrt(1-sin^2(arcsin(4x)))=sqrt(1-16x^2)#.

Thus gives #arcsin(4x)/512-(4x(1-16x^2)sqrt(1-16x^2)-64x^3sqrt(1-16x^2))/1024+C#.

Simplifying this, we get #arcsin(4x)/512+xsqrt(1-16x^2)*(32x^2-1)/256+C#.

Aug 28, 2017

#int x^2sqrt(1-16x^2)dx = 1/512(arcsin(4x) - 4x(1-32x^2)sqrt(1-16x^2))+C#

Explanation:

Substitute :

#x=1/4 sint#

#dx = 1/4 cost dt#

as the integrand function is defined only for #x in [-1/4,1/4]#, #t# will vary in the interval #[-pi/2,pi/2]#, so that:

#t=arcsin 4x#

Then:

#int x^2sqrt(1-16x^2)dx = int (1/4sint)^2 sqrt (1-sin^2t) (1/4 cost) dt#

#int x^2sqrt(1-16x^2)dx = 1/64 int sin^2t cost sqrt (1-sin^2t) dt#

Note now that for #t in [-pi/2,pi/2]# we have #cost >0# so that:

#sqrt (1-sin^2t) = cost#

and:

#int x^2sqrt(1-16x^2)dx = 1/64 int sin^2t cos^2t dt#

using now the trigonometric identities:

#2sinalphacosalpha = sin 2alpha#

#sin^2alpha = (1-cos (2 alpha))/2#

we have:

#int x^2sqrt(1-16x^2)dx = 1/256 int sin^2(2t) dt#

and:

#int x^2sqrt(1-16x^2)dx = 1/512 int (1-cos 4t) dt#

#int x^2sqrt(1-16x^2)dx = 1/512(t-sin(4t)/4)+C#

To invert the substitution now expand #sin 4t# using multiple angle formulas:

#sin 4t = 2sin2tcos2t#

#sin 4t = 4 sint cost (cos^2t-sin^2t)#

#sin 4t = 4 sint sqrt(1-sin^2t)(1-2sin^2t) #,

#sin(4t) = 16xsqrt(1-16x^2)(1-32x^2)#

so:

#int x^2sqrt(1-16x^2)dx = 1/512(arcsin(4x) - 4x(1-32x^2)sqrt(1-16x^2))+C#