How do you find distinct digits (a), (b), (c), (d), (e) such that the following are in increasing order: #-"(a)".26#, #-22/3#, #-"(b)"50%#, #-4.15#, #-4 1/"(c)"#, #0#, #5.1 xx 10^(-"(d)"#, #3/1000#, #0."(e)"#, #60.2%# ?
1 Answer
There are
Explanation:
Given:
#-color(blue)("(a)").26# ,#-22/3# ,#-color(blue)("(b)")50%# ,#-4.15# ,#-4 1/color(blue)("(c)")# ,#0# ,#5.1 xx 10^(-color(blue)("(d)")# ,#3/1000# ,#0color(black)(.)color(blue)("(e)")# ,#60.2%#
Note that:
#-22/3 = -7 1/3 = -7.bar(3)#
Hence:
#color(blue)("(a)")# is#8# or#9#
#color(blue)("(b)")# is#5# or#6#
Note that
#color(blue)("(c)")# is#7# ,#8# or#9#
Note that any number from
So:
#color(blue)("(d)")# is#5# ,#6# ,#7# ,#8# or#9#
Finally:
#color(blue)("(e)")# is#5# or#6#
Putting it together:
#color(blue)("(b)")# and#color(blue)("(c)")# use up#5# and#6# in either order, leaving values#7# ,#8# and#9# .
So possible solutions in increasing lexicographical order are:
#((color(blue)("(a)"), color(blue)("(b)"), color(blue)("(c)"), color(blue)("(d)"), color(blue)("(e)")), (8, 5, 7, 9, 6), (8, 5, 9, 7, 6), (8, 6, 7, 9, 5), (8, 6, 9, 7, 5), (9, 5, 7, 8, 6), (9, 5, 8, 7, 6), (9, 6, 7, 8, 5), (9, 6, 8, 7, 5))#