Differentiate #-x^2-2x-2# using first principles?
1 Answer
Explanation:
The definition of the derivative of
# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
Which we sometimes refer to as the "difference quotient" . So with
# f(x+h) = -(x+h)^2-2(x+h)-2 #
# " " =-(x^2+2xh+h^2) -2x-2h-2#
# " " =-x^2-2xh-h^2 -2x-2h-2#
And so:
# f(x+h) - f(x) = -x^2-2xh-h^2 -2x-2h-2 - (-x^2-2x-2 ) #
# " " = -x^2-2xh-h^2 - 2x - 2h - 2 + x^2 +2x+2 #
# " " = -x^2-2xh-h^2 -2h + x^2 #
And so the derivative of
# f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
# \ \ \ \ \ \ \ \ \= lim_(h rarr 0) ( -x^2-2xh-h^2 -2h + x^2 ) / h #
# \ \ \ \ \ \ \ \ \= lim_(h rarr 0) ( -x^2/h - 2x - h -2 + x^2 / h )#
# \ \ \ \ \ \ \ \ \= -0 - 2x - 0 -2 + 0 #
# \ \ \ \ \ \ \ \ \= - 2x -2 #