If #sin^4y/sin^2x+cos^4y/cos^2x=1#, prove that #sin^2x=sin^2y#?

1 Answer

Refer to a Proof given in the Explanation.

Explanation:

For ease of writing, let, #sin^2x=a, and, sin^2y=b...(star_1).#

Then, clearly, #cos^2x=1-a, and, cos^2y=1-b.#

Substituting these, in what is given, we get,

#a^2/b+(1-a)^2/(1-b)=1.#

#:. a^2(1-b)+b(1-a)^2=b(1-b).#

#:. (a^2cancel(-a^2b))+(cancelb-2bacancel(+ba^2))=cancelb-b^2.#

#:. a^2-2ba+b^2=0, i.e., (a-b)^2=0.#

#:. a=b.........................................................................(star_2).#

Now, #sin^4y/sin^2x+cos^4y/cos^2x,#

#=b^2/a+(1-b)^2/(1-a)...................................................[because, (star_1)],#

#=a^2/a+(1-a)^2/(1-a)...................................................[because, (star_2),#

#=a+(1-a)=1.#

# rArr sin^4y/sin^2x+cos^4y/cos^2x=1,# as desired!

Enjoy Maths.!