Question #14b0d

1 Answer
Feb 18, 2018

#sqrt{{1+2x}/{1-2x}}=1+2x+2x^2+4x^3+...#

Explanation:

Let us first expand #{1+2x}/{1-2x}# in powers of #x# up to the third power (since we want the final expression only up to the third power we don't need to worry about the subsequent terms - they would always contribute higher powers.

For this, we use the result

#1/{1-x} = 1+x+x^2+x^3+x^4 +...#

and get

#{1+2x}/{1-2x} = (1+2x)(1+2x+4x^2+8x^3+...)#
# =1 times (1+2x+4x^2+8x^3 + ... )#
#+2x times (1+2x+4x^2+8x^3 + ... )#
#= (1+2x+4x^2+8x^3 + ... )+ (2x+4x^2+8x^3 + ... )#

Where we have dropped #2x times 8x^3# in the second bracket above since it goes beyond #x^3#

So

#{1+2x}/{1-2x} = 1+4x+8x^2+16x^3+...#

We next use the binomial expansion for

#(1+x)^{1/2} = 1+1/2 x+{1/2(-1/2)}/{2!}x^2+{1/2(-1/2)(-3/2)}/{3!}x^3+...= 1+1/2 x-1/8 x^2+1/16 x^3 +...#

Here again we drop the higher order terms, because they will not contribute in the final result up to #x^3#.

Thus

#sqrt{{1+2x}/{1-2x}} = [1+(4x+8x^2+16x^2+..)]^{1/2}.#
#= 1 + 1/2 (4x+8x^2+16x^3+..)#
#-1/8 (4x+8x^2+16x^3+..)^2 +1/16 (4x+8x^2+16x^3+..)^3+..#.
#= 1+(2x+4x^2+8x^3 + ...)-1/8(16x^2+2times 4x times 8x^2+... )+1/16 times (64x^3+...)+ldots#
#= 1+2x+(4-2)x^2+(8-8+4)x^3+...#
#=1+2x+2x^2+4x^3+...#