What is the derivative of #f(x) = x^2/(e^x-1)# at #x=0# ?

2 Answers
Sep 30, 2017

#1#

Explanation:

Note

Note that #color(blue)(0)^2/(e^(color(blue)(0))-1)# is actually undefined. So strictly speaking the derivative is undefined at #x=0#, since the function is.

The discontinuity is removable however, by defining the function to be zero at #x=0#, so:

#f(x) = { (x^2/(e^x-1) " if " x != 0), (0color(white)(.000) " if " x = 0) :}#

I will assume this definition below.

Quick and dirty method

#e^x - 1 = 1+x+O(x^2) - 1 = x+O(x^2)#

So:

#x^2/(e^x-1) = x^2/(x+O(x^2)) ~~ x^2/x = x#

So the value of the derivative at #0# is that of #x# at #0#, namely #1#.

graph{x^2/(e^x-1) [-5, 5, -2.5, 2.5]}

Oct 1, 2017

#1#

Explanation:

Here's a slightly different way of looking at it...

Given:

#f(x) = { (x^2/(e^x-1) " if " x != 0), ( 0color(white)(.000) " if " x = 0) :}#

The quotient rule tells us that:

#d/(dx) g(x)/(h(x)) = (g'(x)h(x)-g(x)h'(x))/(h(x))^2#

So:

#f'(x) = (2x(e^x-1)-x^2e^x)/(e^x-1)^2#

Note that:

#e^x = sum_(k=0)^oo x^k/(k!)#

which we can approximate for small values of #x# by the quadratic function:

#e_2(x) = 1+x+1/2x^2#

Then:

#2x(e_2(x)-1)-x^2e_2(x) = 2x((1+x+1/2x^2) - 1)-x^2(1+x+1/2x^2)#

#color(white)(2x(e_2(x)-1)-x^2e_2(x)) = 2x(x+1/2x^2)-x^2(1+x+1/2x^2)#

#color(white)(2x(e_2(x)-1)-x^2e_2(x)) = 2x^2+x^3-(x^2+x^3+1/2x^4)#

#color(white)(2x(e_2(x)-1)-x^2e_2(x)) = x^2+1/2x^4#

#color(white)(2x(e_2(x)-1)-x^2e_2(x)) = x^2(1+1/2x^2)#

and:

#(e_2(x)-1)^2 = ((1+x+1/2x^2)-1)^2#

#color(white)((e_2(x)-1)^2) = (x+1/2x^2)^2#

#color(white)((e_2(x)-1)^2) = x^2(1+1/2x)^2#

#color(white)((e_2(x)-1)^2) = x^2(1+x+1/4x^2)#

Then:

#lim_(x->0) (2x(e^x-1)-x^2e^x)/(e^x-1)^2 = lim_(x->0) (2x(e_2(x)-1)-x^2e_2(x))/(e_2(x)-1)^2#

#color(white)(lim_(x->0) (2x(e^x-1)-x^2e^x)/(e^x-1)^2) = lim_(x->0) (color(red)(cancel(color(black)(x^2)))(1+1/2x^2))/(color(red)(cancel(color(black)(x^2)))(1+x+1/4x^2))#

#color(white)(lim_(x->0) (2x(e^x-1)-x^2e^x)/(e^x-1)^2) = lim_(x->0) (1+1/2x^2)/(1+x+1/4x^2)#

#color(white)(lim_(x->0) (2x(e^x-1)-x^2e^x)/(e^x-1)^2) = 1/1#

#color(white)(lim_(x->0) (2x(e^x-1)-x^2e^x)/(e^x-1)^2) = 1#

Here are the graphs of #x^2/(e^x-1)# and #x^2/(e_2(x)-1)# near #x=0#

graph{(y-x^2/(e^x-1))(y-x^2/(x+x^2/2)) = 0 [-4.79, 5.21, -2.6, 2.4]}