Evaluate the double integral #int_0^1 int_0^(sqrt(1-x^2)) sqrt(1-y^2) dy dx # by reversing the order of integration?

1 Answer
Oct 3, 2017

# int_0^1 int_0^(sqrt(1-x^2)) \ sqrt(1-y^2) \ dy \ dx = 2/3 #

Explanation:

We seek:

# I = int_0^1 int_0^(sqrt(1-x^2)) \ sqrt(1-y^2) \ dy \ dx #

If we look at the inner integral first, we have integration limits:

#y# limits are # { (y = 0), (y = sqrt(1-x^2)) :} #

#x# limits are # { (x = 0), (x=1) :} #

So the region #D# is as follows:

Steve M

If we reverse the order of integration the region must obviously remain unaltered, but the integration limits would become:

#x# limits are # { (x = 0), (x=sqrt(1-y^2)) :} #

#y# limits are # { (y = 0), (y = 1) :} #

Steve M

Thus, we can reverse the integration order and the integral remains the same, giving:

# I = int_0^1 int_0^(sqrt(1-y^2)) \ sqrt(1-y^2) \ dx \ dy #

The inner integral is now trivial to integrate:

# I_("Inner") = int_0^(sqrt(1-y^2)) \ sqrt(1-y^2) \ dx #
# \ \ \ \ \ \ \ \ = [(sqrt(1-y^2)) x]_0^(sqrt(1-y^2)) #
# \ \ \ \ \ \ \ \ = (sqrt(1-y^2))(sqrt(1-y^2)) - 0 #
# \ \ \ \ \ \ \ \ = 1-y^2 #

So then returning to our double integral we haver:

# I = int_0^1 I_("Inner") \ dy #
# \ \ = int_0^1 1-y^2 \ dy #
# \ \ = [y-y^3/3]_0^1 #
# \ \ = (1-1/3) - (0)#
# \ \ = 2/3#

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Observations:

One might ask why we bother changing the order of integration. Consider the original integral, without any changes:

# I = int_0^1 int_0^(sqrt(1-x^2)) \ sqrt(1-y^2) \ dy \ dx #

Here, the inner integral is:

# I_("Inner") = int_0^(sqrt(1-x^2)) \ sqrt(1-y^2) \ dy #
# \ \ \ \ \ \ \ \ = [(arcsin(x)+xsqrt(1-x^2))/2]_0^(sqrt(1-x^2)) #
# \ \ \ \ \ \ \ \ = 1/2( arcsin(sqrt(1-x^2)) + (sqrt(1-x^2)))sqrt(1-(sqrt(1-x^2))^2) )#
# \ \ \ \ \ \ \ \ = 1/2( arcsin(sqrt(1-x^2)) + sqrt(1-x^2) sqrt(1-1+x^2) )#
# \ \ \ \ \ \ \ \ = 1/2( arcsin(sqrt(1-x^2)) + xsqrt(1-x^2) ) #

Hopefully the reasoning is already clear, but should we continue we get:

# I = int_0^1 I_("Inner") \ dx #
# \ \ = 1/2 \ int_0^1 arcsin(sqrt(1-x^2)) + xsqrt(1-x^2) \ dx #
# \ \ = 1/2 [xarcsin(sqrt(1-x^2)) - sqrt(1-x^2) -(1-x^2)^(3/2)/3]_0^1 #
# \ \ = 1/2 { (0-0-0) - (0-1-1/3)}#
# \ \ = 1/2 { 0 - (-4/3)}#
# \ \ = 2/3 #

So although we can perform the integration, significant steps have been omitted to perform the integration, and the problem in this form is significantly more complex.