How do you factor #27-8x^3+y^3+18xy# ?
1 Answer
Oct 7, 2017
#=(y^2+4x^2+2xy-3y+6x+9)(3+y-2x)#
Explanation:
Given:
#27-8x^3+y^3+18xy#
Setting
#27+y^3 = (3+y)(9-3y+y^2)#
Setting
#27-8x^3 = (3-2x)(9+6x+4x^2)#
So try mushing
#27-8x^3+y^3+18xy#
#=(3y^2+y^3-2xy^2)+(12x^2+4x^2y-8x^3)+(6xy+2xy^2-4x^2y)+(-9y-3y^2+6xy)+(18x+6xy-12x^2)+(27+9y-18x)#
#=(y^2+4x^2+2xy-3y+6x+9)(3+y-2x)#
As a check, note that if we set
#(y^2+4x^2+2xy-3y+6x+9)#
then we get:
#(9-3y+y^2)" "# or#" "(9+6x+4x^2)#
The only term we would not get from "mushing" these two together is the