What are the intercepts of: #f(x) = 9x^2 - 64#?

1 Answer
Oct 15, 2017

See a solution process below:

Explanation:

This function is a special form of a quadratic:

#color(red)(x)^2 - color(blue)(y)^2 = (color(red)(x) + color(blue)(y))(color(red)(x) - color(blue)(y))#

Let:

#color(red)(x)^2 = color(red)(9)color(red)(x)^2#; then #color(red)(x) = color(red)(3x)#

#color(blue)(y)^2 = color(blue)(64)#; then #color(blue)(x) = color(blue)(8)#

Substituting this into the function gives:

#f(x) = (color(red)(3x) + color(blue)(8))(color(red)(3x) - color(blue)(8))#

To find the #x#-intercepts we set the right side of the function to #0# and solve each term for #0#:

#(color(red)(3x) + color(blue)(8))(color(red)(3x) - color(blue)(8)) = 0#

Solution 1:

#3x + 8 = 0#

#3x + 8 - color(red)(8) = 0 - color(red)(8)#

#3x + 0 = -8#

#3x = -8#

#(3x)/color(red)(3) = -8/color(red)(3)#

#(color(red)(cancel(color(black)(3)))x)/cancel(color(red)(3)) = -8/3#

#x = -8/3#

Solution 2:

#3x - 8 = 0#

#3x - 8 + color(red)(8) = 0 + color(red)(8)#

#3x - 0 = 8#

#3x = 8#

#(3x)/color(red)(3) = 8/color(red)(3)#

#(color(red)(cancel(color(black)(3)))x)/cancel(color(red)(3)) = 8/3#

#x = 8/3#

The x-intercepts are:

#x = -8/3# and #x = -8/3#

Or

#(-8/3, 0)# and #(8/3, 0)#