How do you show that #cosh^2 x - sinh^2 x = 1# ?

1 Answer
Oct 15, 2017

See explanation...

Explanation:

#cosh x = 1/2(e^x+e^(-x))#

#sinh x = 1/2(e^x-e^(-x))#

So:

#cosh^2 x - sinh^2 x = 1/4((e^x+e^(-x))^2-(e^x-e^(-x))^2)#

#color(white)(cosh^2 x - sinh^2 x) = 1/4((e^(2x)+2+e^(-2x))-(e^(2x)-2+e^(-2x)))#

#color(white)(cosh^2 x - sinh^2 x) = 1#