Evaluate the limit # lim_(h rarr 0) (1-cos h)/h^2 #?
1 Answer
We seek:
# L = lim_(h rarr 0) (1-cos h)/h^2 #
Method 1 - L'Hôpital's rule
Both the numerator and the denominator
# L = lim_(h rarr 0) (d/(dh)(1-cos h))/(d/(dh) h^2) = lim_(h rarr 0) (sinh)/(2h) #
Again, we have an indeterminate form, so we can apply L'Hôpital's rule again:
# L = lim_(h rarr 0) (d/(dh) sin h)/(d/(dh) 2h) = lim_(h rarr 0) (cos h)/(2) #
And we can now directly evaluate this limit:
# L = (cos0)/2 = 1/2 #
Method 2 - Trigonometric Manipulation
# L = lim_(h rarr 0) (1-cos h)/h^2 #
# \ \ = lim_(h rarr 0) (1-cos h)/h^2 * (1+cos h)/(1+cos h) #
# \ \ = lim_(h rarr 0) ( (1-cos h)(1+cos h) ) /( h^2(1+cos h) )#
# \ \ = lim_(h rarr 0) ( (1-cos^2h) ) /( h^2(1+cos h) )#
# \ \ = lim_(h rarr 0) ( sin^2h ) /( h^2(1+cos h) )#
# \ \ = lim_(h rarr 0) ( sin^2h )/h^2 * 1/(1+cos h )#
# \ \ = lim_(h rarr 0) ( sin h )/h * ( sinh )/h * 1/(1+cos h )#
# \ \ = {lim_(h rarr 0) ( sin h )/h} * {lim_(h rarr 0) ( sinh )/h }* {lim_(h rarr 0) 1/(1+cos h )}#
# \ \ = {lim_(h rarr 0) ( sin h )/h}^2 * {lim_(h rarr 0) 1/(1+cos h )}#
And we note the first limit is a standard Calculus Trigonometry limit:
# lim_(x rarr 0) (sinx)/x = 1 #
And the second limit can be calculated directly, leading to the desired result:
# L = {1}^2 * {1/(1+cos 0 )}#
# \ \ = 1 * 1/(1+1)#
# \ \ = 1/2#