If #z = x+yi# then what is #(z+i)/(z-i)# in the form #a+bi# ?
3 Answers
Explanation:
#(z+i)/(z-i) = (x+(y+1)i)/(x+(y-1)i)#
#color(white)((z+i)/(z-i)) = ((x+(y+1)i)(x-(y-1)i))/((x+(y-1)i)(x-(y-1)i))#
#color(white)((z+i)/(z-i)) = (((x+i)+yi)((x+i)-yi))/(x^2+(y-1)^2)#
#color(white)((z+i)/(z-i)) = ((x+i)^2+y^2)/(x^2+y^2-2y+1)#
#color(white)((z+i)/(z-i)) = (x^2+2x i-1+y^2)/(x^2+y^2-2y+1)#
#color(white)((z+i)/(z-i)) = ((x^2+y^2-1)+2x i)/(x^2+y^2-2y+1)#
#color(white)((z+i)/(z-i)) = (x^2+y^2-1)/(x^2+y^2-2y+1)+(2x)/(x^2+y^2-2y+1) i#
See below.
Explanation:
If
but
Explanation:
Given that,
Enjoy Maths!