How do you calculate #root(3)(65)# to #4# decimal places ?

1 Answer
Jan 17, 2018

#root(3)(65) ~~ 4.0207#

Explanation:

Note that:

#65 = 4^3+1#

Method 1 - Newton Raphson

Let:

#f(x) = x^3-65#

Then:

#f'(x) = 3x^2#

So given an approximation #a_i# to #f(x) = 0# (i.e. to #root(3)(65)#), a better approximation is given by:

#a_(i+1) = a_i - (f(a_i))/(f'(a_i)) = a_i - (a_i^3-65)/(3a_i^2) = (2a_i^3+65)/(3a_i^2)#

Let #a_0 = 4#

Then:

#a_1 = (2a_0^3+65)/(3a_0^2) = (2(color(blue)(4))^3+65)/(3(color(blue)(4))^2) = 193/48 = 4.0208bar(3)#

This is almost correct to #4# decimal places, but let's iterate once more for greater accuracy...

#a_2 = (2a_1^3+65)/(3a_1^2) = (2(color(blue)(193/48))^3+65)/(3(color(blue)(193/48))^2) = (2(193)^3+65(48)^3)/(3(193)^2(48)) = 10783297/2681928 ~~ 4.02072576#

So to #4# decimal places #root(3)(65) ~~ 4.0207#

Method 2 - Binomial expansion

#root(3)(65) = 4 (1+1/64)^(1/3)#

#color(white)(root(3)(65)) = 4(1+1/3(1/64)-1/9(1/64)^2+5/81(1/64)^3-...)#

#color(white)(root(3)(65)) ~~ 4(1+1/192-1/36864)#

#color(white)(root(3)(65)) = 37055/9216#

#color(white)(root(3)(65)) ~~ 4.020725#

#color(white)(root(3)(65)) ~~ 4.0207" "# to #4# decimal places