What is #lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1)# ?

3 Answers
Oct 22, 2017

#4/3#

Explanation:

#(x^(1/3)-1)/(x^(1/4)-1)# Plugging in 1 gives the indeterminate form #0/0#

Using L'Hospital's rule:

#d/dx(x^(1/3)-1)=1/(3x^(2/3))#

#d/dx(x^(1/3)-1)=1/(4x^(3/4)#

#(1/(3x^(2/3)))/(1/(4x^(3/4)))=(4x^(3/4))/(3x^(2/3))#

Plugging in 1:

#(4x^(3/4))/(3x^(2/3))= (4(1)^(3/4))/(3(1)^(2/3))=4/3#

So:

#lim_(x->1)(x^(1/3)-1)/(x^(1/4)-1)=4/3#

Oct 22, 2017

#lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1) = 4/3#

Explanation:

Let #x=t^12#

Then:

#lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1) = lim_(t->1) (t^4-1)/(t^3-1)#

#color(white)(lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1)) = lim_(t->1) (color(red)(cancel(color(black)((t-1))))(t^3+t^2+t+1))/(color(red)(cancel(color(black)((t-1))))(t^2+t+1))#

#color(white)(lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1)) = lim_(t->1) (t^3+t^2+t+1)/(t^2+t+1)#

#color(white)(lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1)) = 4/3#

graph{(y-(x^(1/3)-1)/(x^(1/4)-1))((x-1)^2+(y-4/3)^2-0.003) = 0 [-1.32, 3.68, -0.23, 2.27]}

Oct 22, 2017

# 4/3.#

Explanation:

Here is another way to solve the Problem, without using

L'Hospital's Rule.

We will use the following Standard Form of Limit :

# L : lim_(x to a) (x^n-a^n)/(x-a)=na^(n-1).#

Now, the Reqd. Lim. #=lim_(x to 1)(x^(1/3)-1)/(x^(1/4)-1),#

#=lim{(x^(1/3)-1^(1/3))/(x-1)}-:{(x^(1/4)-1^(1/4))/(x-1)},#

#={lim(x^(1/3)-1^(1/3))/(x-1)}-:{lim(x^(1/4)-1^(1/4))/(x-1)},#

#={1/3*1^(1/3-1)}-:{1/4*1^(1/4-1)},#

#=1/3-:1/4.#

# rArr" The Reqd. Lim.="4/3.#

Enjoy Maths.!