Solve the equation #sech^(-1)x+lnx=3/2#, if #x>0#?

1 Answer
Oct 26, 2017

#x=sqrt3/2#

Explanation:

Let #sech^(-1)x=t# then #x=secht#,

then #x=1/cosht=2/(e^t+e^(-t)#

or #e^t+e^(-t)=2/x#

or #e^t+1/e^t=2/x#

or #(e^t)^2-2/xe^t+1=0#

Solving for #e^t#, #e^t=(-(-2/x)+-sqrt(4/x^2-4))/2#

= #1/x+-1/xsqrt(1-x^2)#

When #x>0#, we have #e^t=1/x+1/xsqrt(1-x^2)=(1+sqrt(1-x^2))/x#

and taking log we have #t=sech^(-1)x=ln((1+sqrt(1-x^2))/x)#

and #sech^(-1)x+lnx=3/2#

or #ln((1+sqrt(1-x^2))/x)+lnx=ln(3/2)#

or #ln(1+sqrt(1-x^2))=ln(3/2)#

or #1+sqrt(1-x^2)=3/2#

or #sqrt(1-x^2)=1/2#

or #1-x^2=1/4#

or #x^2-3/4=0# i.e. #x=+-sqrt3/2#

but we have #x>0# hence #x=sqrt3/2#