How do you factor #x^3-x^2-14x+24# ?
1 Answer
Oct 25, 2017
Explanation:
Given:
#f(x) = x^3-x^2-14x+24#
By the rational roots theorem, any rational zeros of this polynomial are expressible in the form
So the only possible rational zeros are:
#+-1, +-2, +-3, +-4, +-6, +-8, +-12, +-24#
We find:
#f(2) = color(blue)(2)^3-color(blue)(2)^2-14(color(blue)(2))+24 = 8-4-28+24 = 0#
So
#x^3-x^2-14x+24 = (x-2)(x^2+x-12)#
To factor the remaining quadratic, find a pair of factors of
Hence:
#x^2+x-12 = (x+4)(x-3)#
So:
#x^3-x^2-14x+24 = (x-2)(x+4)(x-3)#