How to find exact value of #sin(pi/24)#?

1 Answer
Nov 1, 2017

#sin(pi/24)=1/2sqrt(2-sqrt(2+sqrt3)#

Explanation:

As #pi/24=180^@/24=(7 1/2)^@#, let us first work out #cos(pi/12)# or #cos15^@#

#cos15^@=cos(45^@-30^@)#

= #cos45^@cos30^@+sin45^@sin30^@#

= #1/sqrt2xxsqrt3/2+1/sqrt2xx1/2#

= #(sqrt3+1)/(2sqrt2)#

Now as #sintheta=sqrt((1-cos2theta)/2)#

#sin(pi/24)=sin(7 1/2)^@#

= #sqrt((1-cos15^@)/2)#

= #sqrt((1-(sqrt3+1)/(2sqrt2))/2)#

= #sqrt((2-(sqrt3+1)/sqrt2)/4)#

= #1/2sqrt(2-(sqrt3+1)/sqrt2)#

= #1/2sqrt(2-(sqrt6+sqrt2)/2)#

= #1/2sqrt(2-sqrt((sqrt6+sqrt2)^2/4)#

= #1/2sqrt(2-sqrt((8+2sqrt12)/4)#

= #1/2sqrt(2-sqrt((8+4sqrt3)/4)#

= #1/2sqrt(2-sqrt(2+sqrt3)#