As #pi/24=180^@/24=(7 1/2)^@#, let us first work out #cos(pi/12)# or #cos15^@#
#cos15^@=cos(45^@-30^@)#
= #cos45^@cos30^@+sin45^@sin30^@#
= #1/sqrt2xxsqrt3/2+1/sqrt2xx1/2#
= #(sqrt3+1)/(2sqrt2)#
Now as #sintheta=sqrt((1-cos2theta)/2)#
#sin(pi/24)=sin(7 1/2)^@#
= #sqrt((1-cos15^@)/2)#
= #sqrt((1-(sqrt3+1)/(2sqrt2))/2)#
= #sqrt((2-(sqrt3+1)/sqrt2)/4)#
= #1/2sqrt(2-(sqrt3+1)/sqrt2)#
= #1/2sqrt(2-(sqrt6+sqrt2)/2)#
= #1/2sqrt(2-sqrt((sqrt6+sqrt2)^2/4)#
= #1/2sqrt(2-sqrt((8+2sqrt12)/4)#
= #1/2sqrt(2-sqrt((8+4sqrt3)/4)#
= #1/2sqrt(2-sqrt(2+sqrt3)#