Question #6de52

1 Answer
Jan 1, 2018

If, as suggested in one of the comments, this was intended to be
#(1-tan^2(x))/(1+tan^2(x))#, then see below for simplification.

Explanation:

Note that #tan(x)=sin(x)/cos(x)# and therefore #tan^2(x)=(sin^2(x))/(cos^2(x))#

#color(blue)((1-tan^2(x)))/color(red)((1+tan^2(x)))=color(blue)(1-(sin^2(x))/(cos^2(x)))/color(red)(1+(sin^2(x))/(cos^2(x)))#

#color(white)("XXX")=color(blue)((cos^2(x)-sin^2(x))/(cos^2(x)))/(color(red)((cos^2(x)+sin^2(x))/cos^2(x))#

#color(white)("XXX")=color(blue)(cos^2(x)-sin^2(x))/color(red)(cos^2(x)+sin^2(x))#

#color(white)("XXX")=color(blue)(cos^2(x)-sin^2(x))/color(red)1#

#color(white)("XXX")=cos^2(x)-sin^2(x)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note: in the original form #(1-tan^2(x))/(1-tan^2(x))# is trivially equal to #1# (provided #tan^2(x)!=1#)