If #x^2-5x+1=0# then what is the value of #x^4-2x^3-16x^2+13x+14# ?

3 Answers
Dec 1, 2017

#16#

Explanation:

From #x^2-5x+1=0# we have #x^2 = 5x-1# then

# x^4-2x^3-16x^2+13x+14 equiv (5 x-1)^2 - 2 x (5 x-1) - 16 (5 x-1) +13x+14 = 15 x^2-75x+31#

Substituting again

#15(5x-1)-75x+31 =16#

Dec 6, 2017

#x^4-2x^3-16x^2+13x+14 = 16#

Explanation:

Given:

#x^2-5x+1=0#

We find:

#x^4-2x^3-16x^2+13x+14 = (x^2-5x+1)(x^2+3x-2)+16#

#color(white)(x^4-2x^3-16x^2+13x+14) = 0(x^2+3x-2)+16#

#color(white)(x^4-2x^3-16x^2+13x+14) = 16#

Alternatively, use #x^2=5x-1# to find:

#x^4-2x^3-16x^2+13x+14#

#= (5x-1)(5x-1)-2x(5x-1)-16(5x-1)+13x+14#

#= 25x^2-10x+1-10x^2+2x-80x+16+13x+14#

#= 15x^2-75x+31#

#= 15(5x-1)-75x+31#

#= 75x-15-75x+31#

#= 16#

Dec 6, 2017

#x^4-2x^3-16x^2+13x+14 = 16#

Explanation:

Here's an approach using matrices.

Given:

#x^2-5x+1=0#

This quadratic equation is satisfied by a matrix called the companion matrix, taking the form:

#((0, color(blue)(-1)),(1, color(blue)(5)))#

Putting #x = ((0, -1),(1, 5))#

We find:

#x^4-2x^3-16x^2+13x+14#

#= x(x(x(x-2)-16)+13)+14#

#= ((0, -1),(1, 5))(((0, -1),(1, 5))(((0, -1),(1, 5))(((0, -1),(1, 5))-((2,0),(0,2)))-((16,0),(0,16)))+((13,0),(0,13)))+((14,0),(0,14))#

#= ((0, -1),(1, 5))(((0, -1),(1, 5))(((0, -1),(1, 5))((-2, -1),(1,3))-((16,0),(0,16)))+((13,0),(0,13)))+((14,0),(0,14))#

#= ((0, -1),(1, 5))(((0, -1),(1, 5))(((-1, -3),(3, 14))-((16,0),(0,16)))+((13,0),(0,13)))+((14,0),(0,14))#

#= ((0, -1),(1, 5))(((0, -1),(1, 5))((-17, -3),(3, -2))+((13,0),(0,13)))+((14,0),(0,14))#

#= ((0, -1),(1, 5))(((-3, 2),(-2, -13))+((13,0),(0,13)))+((14,0),(0,14))#

#= ((0, -1),(1, 5))((10, 2),(-2, 0))+((14,0),(0,14))#

#= ((2, 0),(0, 2))+((14,0),(0,14))#

#= ((16,0),(0,16))#

#= 16#