Question #e4cab

1 Answer

#d/dx(cosh(x))=sinh(x)#

Explanation:

A given value but the proof is that
#sinh(x)# is given as #(e^x-e^-x)/2#
And #cosh(x)=(e^x+e^-x)/2#
And the derivative is #1/2(d/dx)(e^x)+(1/2)(d/dx)(e^-x)#
The derivative of any #e^x# is #e^x# also the #-x# brings down the negative because of the chain rule
You get #1/2e^x+1/2e^-x(-1)#
#1/2e^x-1/2e^-x#
or #(e^x-e^-x)/2#
so #d/dx(cosh(x))=sinh(x)#