Solve the equation #sin2x+sin3x+sin5x=0# if #x# lies in the interval #0^@<x<180^@#?

1 Answer
Dec 8, 2017

#x=60^@,72^@,90^@,144^@#

Explanation:

#sin2x+sin3x+sin5x=0# can be written as

#2sin((3x+2x)/2)cos((3x-2x)/2)+2sin((5x)/2)cos((5x)/2)=0#

or #2sin((5x)/2)cos(x/2)+2sin((5x)/2)cos((5x)/2)=0#

i.e. #2sin((5x)/2)(cos(x/2)+cos((5x)/2))=0#

or #2sin((5x)/2)[2cos(((5x)/2+x/2)/2)cos(((5x)/2-x/2)/2)]=0#

or #4sin((5x)/2)cos((3x)/2)cosx=0#

i.e. either #sin((5x)/2)=0# i.e. #(5x)/2=npi# i.e. #x=(2npi)/5# i.e. #{72^@,144^@}# in the interval #0^@ < x < 180^@#

or #cos((3x)/2)=0# i.e. #(3x)/2=pi/2(2n+1)# i.e. #x=((2n+1)pi)/3# i.e. #{60^@}# in the interval #0^@ < x < 180^@#

or #cosx=0# i.e. #x=(2n+1)pi/2# i.e. #{90^@}# in the interval #0^@ < x < 180^@#

where #n# is an integer.

and in the interval #0^@ < x < 180^@#, #x=60^@,72^@,90^@,144^@#