#vecF(x,y)=x(x+y)\hati + xy^2\hatj;#
Section 1: #\quad (0,0)\rightarrow(4,0)#
#y=0; \qquad dy=0; \qquad vecF(x,y)=x^2\hati;\qquad dvecr = dx\hati;#
#W_1=\int_0^4vecF(x,y).dvecr = \int_0^4x^2dx=64/3#.
Section 2: #\quad(4,0)\rightarrow(0,4)#
Equation of the line segment is: #\quad y=4-x;#
#dvecr = dx\hati + dy\hatj; y=4-x; \qquad dy=-dx#
#vecF(x,y).dvecr = x(x+y)dx + xy^2dy,#
#\qquad \qquad \qquad \qquad = 4xdx-x(4-x)^2dx = -(x^3-8x^2+12x)dx#
#W_2=\int_{(4,0)}^{(0,4)}vecF(x,y).dvecr,#
# = -\int_{x=4}^{x=0}(x^3-8x^2+12x)dx =\int_{x=0}^{x=4}(x^3-8x^2+12x)dx#
#=[x^4/4-8/3x^3+6x^2]_0^4=-32/3#.
Section 3: #\quad (0,4)\rightarrow(0,0)#
#x=0; dx=0; \qquad vecF(x,y)=vec0;#
#W_3=0#
Net Work Done:
#W_{"net"} = W_1 + W_2 + W_3 = 64/3-32/3+0=32/3#.