Question #4db5a

2 Answers

#sin 22.5 = sqrt(2 - sqrt2)/2#

Explanation:

Method 1 .
Use trig identity:
#sin (x/2) = +- sqrt((1 - cos x)/2#
In this case --> #x = 45^@# --> #cos x = sqrt2/2#
#sin 22^@5 = +- sqrt((1 - sqrt2/2)/2) = +- sqrt(2 - sqrt2)/2#
Since sin 22.5 is positive, therefor,
#sin 22^@5 = sqrt(2 - sqrt2)/2#
Method 2
Use trig identity:
#2sin^2 (x/2) = 1 - cos x#
In this case:
#2sin^2 (22.5) = 1 - cos 45 = 1- sqrt2/2 = (2 - sqrt2)/2#
#sin^2 (22.5) = (2 - sqrt2)/4#
#sin (22.5) = sqrt(2 - sqrt2)/2#

Dec 13, 2017

Let's see.

Explanation:

Let, #color(red)(22.5°=theta)#

#:.2theta=45°#

Now we get, #2theta=45°#

#:.tan(2theta)=tan45°#

#:.tan(2theta)=1#

#:.color(red)(sin(2theta)=cos(2theta))#......(1).

Now, by formula of multiple and sub-multiple angles #rarr#

#sin(2theta)=2sinthetacostheta#........(2).

#cos(2theta)=cos^2(theta)-sin^2(theta)#.......(3).

Now substituting #(3)# in #(1)# #rarr#

#:.sin(2theta)=cos^2(theta)-sin^2(theta)#

#:.(sin^2(2theta))/(4sin^2theta)-sin^2(theta)=1/sqrt(2)#.......From (2)#.

#:.(1-8sin^4(theta))/(8sin^2(theta))=1/sqrt(2)#

#:.color(red)(8sin^4(theta)+4sqrt(2)sin^2(theta)-1=0)#

#:.sin^2theta=(-4sqrt2+-sqrt((4sqrt2)^2-4(8)(-1)))/(2(8))#

#:.sin^2theta=(2-sqrt2)/4,-(2+sqrt2)/4#

#:.sintheta=sqrt(2-sqrt2)/2, sqrt(-(2+sqrt2))/2#

Now ignoring the imaginary value
of #sintheta# and substituting #theta=22.5°# we get,

#color(red)(sin22.5°=sqrt(2-sqrt2)/2)#. (Answer).

Hope it Helps:)