Question #dd613

2 Answers

#sinx#

Explanation:

First simplify the inverse trig identities.
#cscx=1/sinx#; #cotx=cosx/sinx#
Plugging those in you get
#1/sinx-cosx(cosx/sinx)# multiply
#1/sinx-cos^2x/sinx# combine them together
#(1-cos^2x)/sinx# Use trig identities of squared trig functions
#sin^2x+cos^2x=1 => sin^2x=1-cos^2x#
#sin^2x/sinx=>sinx# Reduce

Dec 15, 2017

#cscx-cosx*cotx=sinx#

Explanation:

#cscx-cosx*cotx#

=#1/sinx-cosx*cosx/sinx#

=#[1-(cosx)^2]/sinx#

=#(sinx)^2/sinx#

=#sinx#