Question #1f9ed

2 Answers
Dec 15, 2017

#lim_(xrarr0)(xcosx+x)/(sinxcosx )=2#

Explanation:

Given #lim_(xrarr0)(xcosx+x)/(sinxcosx )# first factor the numerator:

#lim_(xrarr0)(x(cosx+1))/(sinxcosx )#

Now rearrange a little to make things more explicit:

#lim_(xrarr0)(x/sinx*(cosx+1)/cosx)#

as long as both limits exist we can change this to a product of two limits:

#lim_(xrarr0)(x/sinx)*lim_(xrarr0)((cosx+1)/cosx)#

Since #lim_(xrarr0)(sinx/x)=1# its reciprocal will also be 1, that is #lim_(xrarr0)(x/sinx)=1#, so:

#lim_(xrarr0)(x/sinx)*lim_(xrarr0)((cosx+1)/cosx)=1*lim_(xrarr0)((cosx+1)/cosx)#

The remaining limit can be evaluated by direct substitution:

#lim_(xrarr0)((cosx+1)/cosx)=(1+1)/1=2#

Dec 15, 2017

#lim_(x->0)(xcosx+x)/(sinxcosx )=2#

Explanation:

#lim_(x->0)(xcosx+x)/(sinxcosx )#

#-=lim_(x->0)(xcosx)/(sinxcosx )+lim_(x->0)(x)/(sinxcosx )#

#-=lim_(x->0)(x)/(sinx)+lim_(x->0)(x)/(sinxcosx)#

#-=lim_(x->0)(x)/(sinx)+lim_(x->0)(x)/(sinx)*lim_(x->0)1/cosx#

Since #lim_(x->0)(sinx)/(x )=1# then #lim_(xrarr0)x/sinx=1#

#-=1+1*lim_(x->0)1/cosx#

#-=1+lim_(x->0)1/cosx#

#lim_(x->0)1/cosx=1#

#-=1+1=2#

#lim_(x->0)(xcosx+x)/(sinxcosx )=2#