Evaluate the limit # lim_(n rarr 0) (lamda^n-mu^n)/n# ?

3 Answers
Dec 24, 2017

# lim_(n rarr 0) (lamda^n-mu^n)/n = ln (lamda/mu) #

Explanation:

We seek:

# L = lim_(n rarr 0) (lamda^n-mu^n)/n#

Both the numerator and the denominator #rarr 0# as #x rarr 0# (because #lamda^n rarr1# and #mu^n rarr 1#. Thus the limit #L# (if it exists) is of an indeterminate form #0/0#, and consequently, we can apply L'Hôpital's rule to get:

# L = lim_(n rarr 0) (d/(dn) (lamda^n-mu^n))/(d/(dn) n) #

# \ \ = lim_(n rarr 0) (lamda^n ln lamda - mu^n ln mu)/(1) #

Which we can now just evaluate to get:

# L = 1ln lamda- 1 ln mu #
# \ \ = ln lamda - ln mu #
# \ \ = ln (lamda/mu) #

Dec 24, 2017

#log_e(lambda/mu)#

Explanation:

#(lambda^n-mu^n)/n = (lambda^(0+n)-lambda^0)/n-(mu^(0+n)-mu^0)/n#

then

#lim_(n->0)(lambda^n-mu^n)/n = lim_(n->0)(lambda^(0+n)-lambda^0)/n-lim_(n->0)(mu^(0+n)-mu^0)/n = lambda'(0)-mu'(0) = log_elambda-log_e mu = log_e(lambda/mu)#

Dec 28, 2017

# ln(lambda/mu)#.

Explanation:

Let us use this Standard Form of Limit : #lim_(h to 0)(a^h-1)/h=lna#.

Hence, #lim_(n to 0)(lambda^n-mu^n)/n#,

#=lim{(lambda^n-1)-(mu^n-1)}/n#,

#=lim{(lambda^n-1)/n-(mu^n-1)/n}#,

#=lnlambda-lnmu#,

#=ln(lambda/mu)#.