Evaluate the limit # lim_(n rarr 0) (lamda^n-mu^n)/n# ?
3 Answers
# lim_(n rarr 0) (lamda^n-mu^n)/n = ln (lamda/mu) #
Explanation:
We seek:
# L = lim_(n rarr 0) (lamda^n-mu^n)/n#
Both the numerator and the denominator
# L = lim_(n rarr 0) (d/(dn) (lamda^n-mu^n))/(d/(dn) n) #
# \ \ = lim_(n rarr 0) (lamda^n ln lamda - mu^n ln mu)/(1) #
Which we can now just evaluate to get:
# L = 1ln lamda- 1 ln mu #
# \ \ = ln lamda - ln mu #
# \ \ = ln (lamda/mu) #
Explanation:
then
Explanation:
Let us use this Standard Form of Limit :
Hence,