Find the derivative using first principles? : #ln(3x) #
1 Answer
# dy/dx = 1/x #
Explanation:
Let
Then the limit definition of the derivative tells us that;
# f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( ln(3(x+h))-ln(3x) ) / h #
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( ln(3x+3h)-ln(3x) ) / h #
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( ln( (3x+3h)/(3x) ) ) / h #
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( ln( 1+h/x ) ) / h #
Now perform a substitution, Let:
# v=h/x# so that#v rarr 0# as#h rarr 0#
Then:
# f'(x) = lim_(v rarr 0) ( ln( 1+v ) ) / (vx) #
# \ \ \ \ \ \ \ \ \ = lim_(v rarr 0) 1/x( ln( 1+v ) ) / (v) #
# \ \ \ \ \ \ \ \ \ = 1/x \ lim_(v rarr 0) (1/v) ln( 1+v ) #
# \ \ \ \ \ \ \ \ \ = 1/x \ lim_(v rarr 0) ln( 1+v ) ^(1/v) #
# \ \ \ \ \ \ \ \ \ = 1/x \ ln{lim_(v rarr 0) ( 1+v ) ^(1/v)} #
This limit is a known result, as determined by Leonhard Euler, and we have:
# lim_(v rarr 0) ln( 1+v ) ^(1/v) = e #
Leading to the result:
# f'(x) = 1/x \ lne #
# \ \ \ \ \ \ \ \ \ = 1/x #