Find # int int \ (x^2+y) \ dA # on region bounded by the curves #x=y^2# and #y=x^2#?

1 Answer
Jan 11, 2018

# int int_D \ (x^2+y) \ dx \ dy = 33/140#

Explanation:

The region #D# is that bounded by the curves #x=y^2# and #y=x^2=>x=sqrt(y)#

Steve M

If we integrate wrt #x# first then we consider an infinitesimally thin horizontal strip, so we start from the parabola #color(red)(x=y^2)# and end on the parabola #y=x^2# which corresponds to the positive arc #color(blue)(x=sqrt(y))#. And as we vary #y# we go from #y=0# to #y=1#

So then calculating the double integral by integrating wrt #x# before #y# we can write:

# I = int int_D \ (x^2+y) \ dx \ dy #
# \ \ = int_0^1 int_(y^2)^(sqrt(y)) \ (x^2+y) \ dx \ dy #
# \ \ = int_0^1 {int_(y^2)^(sqrt(y)) \ (x^2+y) \ dx } \ dy #
# \ \ = int_0^1 [x^3/3+xy]_(x=y^2)^(x=sqrt(y)) \ dy #
# \ \ = int_0^1 (y^(3/2)/3+y^(3/2))- (y^6/3+y^3) \ dy #
# \ \ = int_0^1 4/3y^(3/2)- 1/3y^6-y^3 \ dy #
# \ \ = [4/3y^(5/2)/(5/2)- 1/3y^7/7-y^4/4 ]_0^1#
# \ \ = (8/15-1/21-1/4) - 0#
# \ \ = 33/140#

We could also reverse the order of integration.

Steve M

If we integrate wrt #y# first then we consider an infinitesimally thin vertical strip, so we start from the parabola #color(blue)(y=x^2)# and end on the parabola #color(red)(y^2=x)# which corresponds to #color(red)(y=sqrt(x))#. And as we vary #x# we go from #y=0# to #y=1#

So then calculating the double integral by integrating wrt #x# before #y# we can write:

# I = int int_D \ (x^2+y) \ dy \ dx #
# \ \ = int_0^1 int_(x^2)^(sqrt(x)) \ (x^2+y) \ dy \ dx #
# \ \ = int_0^1 {int_(x^2)^(sqrt(x)) \ (x^2+y) \ dy } \ dx #
# \ \ = int_0^1 [x^2y+y^2/2]_(y=x^2)^(y=sqrt(x)) \ dx #
# \ \ = int_0^1 (x^(5/2)+x/2)-(x^4+x^4/2) \ dx #
# \ \ = int_0^1 x^(5/2)+x/2-3/2x^4 \ dx #
# \ \ = [x^(7/2)/(7/2)+x^2/4-3/10x^5]_0^1#
# \ \ = (2/7+1/4-3/10) - 0#
# \ \ = 33/140#