Question #caf2c

1 Answer
Feb 20, 2018

#int (2lnx-3)/(ln^2x-3lnx+2) dx =e Ei(lnx-1) + e^2 Ei(lnx-2) +C#

where #Ei(x) = int e^x/x dx# is the exponential integral.

Explanation:

Pose #y=lnx# and decompose the resulting rational function of #y# in partial fractions:

#(2y-3)/(y^2-3x+2) = (2y-3)/((y-1)(y-2))#

#(2y-3)/(y^2-3x+2) = A/(y-1)+B/(y-2)#

#(2y-3)/(y^2-3x+2) = (A(y-2)+B(y-1))/((y-1)(y-2))#

#2y-3 = (A+B)y - (2A+B)#

#{(A+B =2),(2A+B=3):}#

#{(A=1),(B=1):}#

So:

#int (2lnx-3)/(ln^2x-3lnx+2) dx = int dx/(lnx-1) + int dx/(lnx-2)#

Consider the first integral:

#int dx/(lnx-1)#

and substitute #t=lnx-1#, #x=e^(t+1) #, #dx = e^(t+1)dt#:

#int dx/(lnx-1) = int e^(t+1)/tdt = e int e^t/t dt#

This last integral cannot be expressed in terms of elementary functions but is a specific function called exponential integral, so:

# int dx/(lnx-1) = e Ei(t) +C#

and undoing the substitution:

# int dx/(lnx-1) = e Ei(lnx-1) +C#

Similarly:

# int dx/(lnx-2) = e^2 Ei(lnx-2) +C#

and in conclusion:

#int (2lnx-3)/(ln^2x-3lnx+2) dx =e Ei(lnx-1) + e^2 Ei(lnx-2) +C#