Question #37497

1 Answer
Jan 20, 2018

See explanation.

Explanation:

Begin with the graph of #f(x)=x^2#.

#g(x)# is created by a series of transformations to that graph.

#g(x)=-(x-4)^2+5#:

Take the graph of #f(x)# and shift it 4 units to the right to get a graph of #y=(x-4)^2#.

Now take your new graph and reflect it over the #x#-axis to get the graph of #y=-(x-4)^2#.

Take this new graph and shift it up 5 units to get the graph of #y=-(x-4)^2+5#, which is the graph of #g(x)#.