If #sinx=5/6#, find #cosx#?

1 Answer
Jan 20, 2018

#cosx=+-sqrt11/6#

Explanation:

As #sinx=5/6# and #sin^2x+cos^2x=1#

we have #cosx=sqrt(1-sin^2x)=sqrt(1-(5/6)^2)#

= #sqrt(1-25/36)=sqrt(11/36)=+-sqrt11/6#

Note that sign of #cosx# colud be + or -, depending on the quadrant in which #x# lies. As #sinx# is positive, #x# lies in #Q1# or #Q2#.

If #x# is in #Q1#, #cosx=sqrt11/6# and if #x# lies in #Q2# #cosx=-sqrt11/6#.