Question #93667

1 Answer
Jan 30, 2018

#intxe^4dx=(e^4x^2)/2+"C"#

Explanation:

Given: #intxe^4dx# (unless you meant #intxe^(4x)dx#

In this example, #e^4# is a constant which we can pull out of the integral. Therefore we can rewrite the integral as:

#e^4*intxdx#

To find #intxdx# use the following princple:

#intx^adx=(x^(a+1))/(a+1)+"C";x>0#

So #intxdx=(x^(1+1))/(1+1)=x^2/2+"C"#

Multiplying #e^4# we get

#e^4*x^2/2+"C"=(e^4x^2)/2+"C"#