How do you factor #x^3-1/x^3+4# ?

2 Answers
Feb 5, 2018

#x^3-1/x^3+4 = (x-1/x+1)(x^2-x+2+1/x+1/x^2)#

Explanation:

Given:

#x^3-1/x^3+4#

Here's a partial factorisation...

Start with:

#(x-1/x)^3 = x^3-3x+3/x-1/x^3#

So:

#x^3-1/x^3+4 = (x-1/x)^3+3(x-1/x)+4#

Let:

#t = x-1/x#

Then:

#t^3+3t+4 = (t+1)(t^2-t+4)#

So:

#x^3-1/x^3+4 = (x-1/x+1)((x-1/x)^2-(x-1/x)+4)#

#color(white)(x^3-1/x^3+4) = (x-1/x+1)(x^2-2+1/x^2-x+1/x+4)#

#color(white)(x^3-1/x^3+4) = (x-1/x+1)(x^2-x+2+1/x+1/x^2)#

Feb 5, 2018

#x^3-1/x^3+4#

#=1/x^3(x+(1/2-1/2sqrt(5)))(x^2-(1/2-1/2sqrt(5))x+(3/2-1/2sqrt(5)))(x+(1/2+1/2sqrt(5)))(x^2-(1/2+1/2sqrt(5))x+(3/2+1/2sqrt(5)))#

Explanation:

Given:

#x^3-1/x^3+4 = 1/x^3(x^6+4x^3-1)#

Let us avoid the rational expressions while we factor, by focusing on the hextic polynomial #x^6+4x^3-1#.

We can first treat this as a quadratic in #x^3# and factor by completing the square:

#x^6+4x^3-1 = (x^3)^2+4(x^3)+4-5#

#color(white)(x^6+4x^3-1) = (x^3+2)^2-(sqrt(5))^2#

#color(white)(x^6+4x^3-1) = (x^3+2-sqrt(5))(x^3+2+sqrt(5))#

Note that:

#x^3+y^3 = (x+y)(x^2-xy+y^2)#

Using this, we can factor further in terms of #root(3)(2-sqrt(5))# and #root(3)(2+sqrt(5))#, but these expressions are overcomplicated.

Note that:

#(1+sqrt(5))^3 = 1+3sqrt(5)+3(sqrt(5))^2+(sqrt(5))^3 = 16+8sqrt(5) = 2^3(2+sqrt(5))#

Similarly:

#(1-sqrt(5))^3 = 2^3(2-sqrt(5))#

So:

#root(3)(2+sqrt(5)) = 1/2+1/2sqrt(5)#

#root(3)(2-sqrt(5)) = 1/2-1/2sqrt(5)#

Then:

#(1/2+1/2sqrt(5))^2 = 1/4(1+sqrt(5))^2 = 1/4(1+2sqrt(5)+5) = 3/2+1/2sqrt(5)#

#(1/2-1/2sqrt(5))^2 = 1/4(1-sqrt(5))^2 = 1/4(1-2sqrt(5)+5) = 3/2-1/2sqrt(5)#

So putting #y = 1/2-1/2sqrt(5)# or #y = 1/2+1/2sqrt(5)# we find:

#(x^3+2-sqrt(5)) = (x+(1/2-1/2sqrt(5)))(x^2-(1/2-1/2sqrt(5))x+(3/2-1/2sqrt(5)))#

#(x^3+2+sqrt(5)) = (x+(1/2+1/2sqrt(5)))(x^2-(1/2+1/2sqrt(5))x+(3/2+1/2sqrt(5)))#

Putting it all together:

#x^3-1/x^3+4#

#=1/x^3(x+(1/2-1/2sqrt(5)))(x^2-(1/2-1/2sqrt(5))x+(3/2-1/2sqrt(5)))(x+(1/2+1/2sqrt(5)))(x^2-(1/2+1/2sqrt(5))x+(3/2+1/2sqrt(5)))#