How do you solve #cos x = 3# ?
3 Answers
Explanation:
#"note that "-1<=cosx <=1#
#rArrcosx=3" is not valid"#
Explanation:
The cosine function only gives out answers from
Explanation:
As a real valued function
To define
#e^(ix) = cos x + i sin x#
and some basic trigonometric properties:
#cos(-x) = cos(x)#
#sin(-x) = - sin(x)#
Then we find:
#(e^(ix)+e^(-ix))/2 = 1/2((cos(x) + i sin(x))+(cos(-x)+i sin(-x)))#
#color(white)((e^(ix)+e^(-ix))/2) = 1/2((cos(x) + i sin(x))+(cos(x)-i sin(x)))#
#color(white)((e^(ix)+e^(-ix))/2) = cos(x)#
Then we can use the definition:
#cos(x) = 1/2(e^(ix)+e^(-ix))#
to extend the definition of
Then to solve
#3 = cos(x) = 1/2(e^(ix)+e^(-ix))#
Multiply both ends by
#0 = (e^(ix))^2-6(e^(ix))+1#
#color(white)(0) = (e^(ix))^2-6(e^(ix))+9-8#
#color(white)(0) = (e^(ix)-3)^2-(2sqrt(2))^2#
#color(white)(0) = ((e^(ix)-3)-2sqrt(2))((e^(ix)-3)+2sqrt(2))#
#color(white)(0) = (e^(ix)-3-2sqrt(2))(e^(ix)-3+2sqrt(2))#
So:
#e^(ix) = 3+-2sqrt(2)#
So:
#ix = ln(3+-2sqrt(2))+2npii" "# for any#n in ZZ#
Noting that
#x = 2npi+-iln(3+2sqrt(2))" "# for any#n in ZZ#