Question #5f3d4

2 Answers
Feb 10, 2018

# -pi/4#.

Explanation:

We have, #int1/(1+sinx)dx=int1/(1+sinx)xx(1-sinx)/(1-sinx)dx#,

#=int(1-sinx)/cos^2xdx=int(1/cos^2x-sinx/cosx*1/cosx)dx#,

#=int(sec^2x-secxtanx)dx=(tanx-secx)+b#.

But, #tanx-secx=sinx/cosx-1/cosx=(sinx-1)/cosx#,

#=-(1-sinx)/cosx#,

#=-{cos^2(x/2)+sin^2(x/2)-2cos(x/2)sin(x/2)}/(cos^2(x/2)-sin^2(x/2))#,

#=-(cos(x/2)-sin(x/2))^2/{(cos(x/2)-sin(x/2))(cos(x/2)+sin(x/2))#,

#=-(cos(x/2)-sin(x/2))/(cos(x/2)+sin(x/2))#,

#=(sin(x/2)-cos(x/2))/(sin(x/2)+cos(x/2))#,

#={cos(x/2)(sin(x/2)/cos(x/2)-1)}/{cos(x/2)(sin(x/2)/cos(x/2)+1)}#,

#=(sin(x/2)/cos(x/2)-1)/(sin(x/2)/cos(x/2)+1)#,

#=(tan(x/2)-tan(pi/4))/(1+tan(x/2)*tan(pi/4))#.

#rArr int1/(1+sinx)dx=tan(x/2-pi/4)+b#.

#:. int1/(1+sinx)dx=tan(x/2-pi/4)+b=tan(x/2+a)+b#,

#rArr a=-pi/4#, is the desired value!

Feb 10, 2018

# -pi/4#.

Explanation:

Here is a Second Method to solve the Problem :

By the Definition of Integral, we have,

#intf(x)dx=F(x)+B iff d/dx{F(x)}=f(x)#.

Accordingly, #int1/(1+sinx)dx=tan(x/2+a)+b#, implies that,

#d/dx{tan(x/2+a)}=1/(1+sinx)#.

#rArr 1/(1+sinx)=sec^2(x/2+a)*d/dx{(x/2+a)}..."[The Chain Rule]"#,

#=1/2*sec^2(x/2+a)=1/(2cos^2(x/2+a))#,

#=1/(1+cos(2*(x/2+a))),.........[because, 1+cos2A=2cos^2A]#,

#=1/(1+cos(x+2a))#,

#=1/[1+sin{pi/2+(x+2a)}]......[because, sin(pi/2+A)=cosA]#,

# i.e., 1/(1+sinx)=1/[1+sin{pi/2+(x+2a)}]#.

#:. pi/2+2a=0, or, a=-pi/4#, as before!

Enjoy Maths., & Spread the Joy!