Question #6f1e7

3 Answers
Feb 11, 2018

http://slideplayer.com/slide/8387248/

I will use the first formula to solve the problem.

Suppose, #dy=1/s^2+1#

Hence,

#y=intdy=int(1/s^2+1)=ints^-2+ints^0=s^(-2+1)/(-2+1)+s^(0+1)/(0+1)=color(red)(s-1/s+c#

Hope it helps...
Thank you...

Feb 11, 2018

#arctan(s)+C#

Explanation:

If you meant, #int1/(s^2+1)# then the integration will be

#arctan(s)+C#.

Source:

http://www.math.com/tables/derivatives/tableof.htm

Feb 11, 2018

# \ #

# int 1/{s^2 + 1} ds = tan^{-1}(s) + C. #

Explanation:

# \ #

# "This can be done nicely by a trig substitution." #

# "Let:" \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad s = tan( \theta ). #

# "Compute:" \qquad \qquad \qquad \qquad \qquad ds = sec^2( \theta ) d\theta. #

# "Substitute these into the original integral:" #

# :. \qquad \qquad \qquad \quad int 1/{s^2 + 1} ds \ = \ int 1/{ tan^2( \theta ) + 1 } sec^2( \theta ) d\theta #

# "Using the Pythagorean trig identity:" \qquad tan^2( \theta ) + 1= sec^2( \theta ): #

# \qquad \qquad \qquad \qquad \qquad \qquad \ = \ int 1/{ sec^2( \theta ) } sec^2( \theta ) d\theta #

# \qquad \qquad \qquad \qquad \qquad \qquad \ = \ int \ 1 d\theta #

# \qquad \qquad \qquad \qquad \qquad \qquad \ = \ int \ d\theta #

# \qquad \qquad \qquad \qquad \qquad \qquad \ = \ \theta + C #

# "Thus:" \qquad \qquad \qquad \qquad \qquad int 1/{s^2 + 1} ds \ = \ \theta + C. \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (1) #

# "Now we must convert" \ \ \theta \ \ "back into the original variable" \ s." #

# "Use our original substitution equation:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad s = tan( \theta ). #

# "Solve for" \ \ \theta; "use inverse trig functions:" #

# \qquad \qquad \qquad \qquad \ \ \ tan^{-1} [s] = tan^{-1}[ tan( \theta ) ]. #

# "Inverse functions cancel out (undo the effect of) the original" #
# "function. So, for example:" \ \ tan^{-1}[ tan( \theta ) ] = \theta. \ "So, continuing:" #

# \qquad \qquad \qquad \qquad :. \qquad \qquad \ tan^{-1} (s) = \theta. #

# \qquad \qquad \qquad \qquad :. \qquad \qquad \ \ \theta = tan^{-1} (s). #

# "Now substitute this back into equation (1):" #

# \qquad \qquad \qquad \qquad \ int 1/{s^2 + 1} ds \ = \ \theta + C \ = \ tan^{-1} (s) + C. #

# \qquad \qquad :. \qquad \qquad int 1/{s^2 + 1} ds = tan^{-1}(s) + C. #

# "This is our answer." #