Prove that #(sin^3x+cos^3x)/(1-2cos^2x)=(secx-sinx)/(tanx-1)#
#RHS=(secx-sinx)/(tanx-1)#
#color(white)(RHS)=(1/cosx-sinx)/(sinx/cosx-1)#
#color(white)(RHS)=(1-sinxcosx)/(sinx-cosx)#
#color(white)(RHS)=(1-sinxcosx)/(sinx-cosx)*((sinx+cosx))/((sinx+cosx))#
#color(white)(RHS)=((1-sinxcosx)(sinx+cosx))/(sin^2x-cos^2x)#
#color(white)(RHS)=(sinx+cosx-sin^2xcosx-sinxcos^2x)/(1-cos^2x-cos^2x)#
#color(white)(RHS)=(sinx-sinxcos^2x+cosx-sin^2xcosx)/(1-2cos^2x)#
#color(white)(RHS)=(sinx(1-cos^2x)+cosx(1-sin^2x))/(1-2cos^2x)#
#color(white)(RHS)=(sinx*sin^2x+cosx*cos^2x)/(1-2cos^2x)#
#color(white)(RHS)=(sin^3x+cos^3x)/(1-2cos^2x)#
#color(white)(RHS)=LHS#