A line segment has endpoints at #(4 ,1 )# and #(5 ,3)#. If the line segment is rotated about the origin by #pi #, translated vertically by #-2 #, and reflected about the x-axis, what will the line segment's new endpoints be?

1 Answer
Apr 14, 2016

(-4 , 3) , (-5 , 5)

Explanation:

under a rotation of # pi#" about the origin " #

a point (x , y) → (-x , -y)

Name the points A(4 , 1 ) and B(5 , 3)
#color(red)"----------------------------------------------"#
Step 1 :

A(4 , 1) → A'(-4 ,-1) and B(5 , 3) → B'(-5 , -3)
#color(red)"----------------------------------------------"#

Under a translation of #((0),(-2))#

a point (x , y) → (x , y-2)
#color(red)"-----------------------------------------------"#
Step 2 :

A'(-4 , -1) →A'' (-4 , -3) and B'(-5 ,-3) → B''(-5 , -5)
#color(red)"--------------------------------------------------"#

Under a reflection in the x-axis

a point (x , y) → (x , -y)
#color(red)"-------------------------------------------------"#

Step 3 :

A''(-4 , -3) → A'''(-4 , 3) and B''(-5 , -5) → (-5 , 5)
#color(red)"----------------------------------------------------"#