A line segment has endpoints at #(7 ,2 )# and #(1 ,8 )#. The line segment is dilated by a factor of #6 # around #(4 ,5 )#. What are the new endpoints and length of the line segment?

1 Answer
Jan 28, 2018

#(22,-13),(-14,23),~~37.4#

Explanation:

#"label the endpoints "A(7,2)" and "B(1,8)#

#"let A' and B' be the images of A and B"#

#"let the centre of dilatation be C"#

#rArrvec(CA')=color(red)(6)vec(CA)#

#rArrula'-ulc=6(ula-ulc)#

#rArrula'-ulc=6ula-6ulc#

#rArrula'=6ula-5ulc#

#color(white)(rArrula')=6((7),(2))-5((4),(5))#

#color(white)(rArrula')=((42),(12))-((20),(25))=((22),(-13))#

#rArrA'=(22,-13)#

#rArrvec(CB')=color(red)(6)vec(CB)#

#rArrulb'-ulc=6ulb-6ulc#

#rArrulb'=6ulb-5ulc#

#color(white)(rArrulb')=6((1),(8))-5((4),(5))#

#color(white)(rArrulb')=((6),(48))-((20),(25))=((-14),(23))#

#rArrB'=(-14,23)#

#"calculate the length using the "color(blue)"distance formula"#

#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#

#"let "(x_1,y_1)=(22,-13)" and "(x_2,y_2)=(-14,23)#

#d=sqrt((-14-22)^2+(23-13)^2)=sqrt(1296+100)#

#rArrd=sqrt1396~~37.4" to 1 dec. place"#